

Использование инулина и олигофруктозы BENEOTM в молочных спредах

1. Определения

На рынке пищевых продуктов существует много типов спредов, основанных на водномасляных эмульсиях («вода в масле», как, например, маргарин, или «масло в воде»). Понятие «спред с непрерывной водной фазой» объединяет большое число продуктов, основанных на типично молочных ингредиентах, таких как сливки, сыр, йогурт. Эти продукты хорошо сочетаются как со сладкими вкусами (шоколад, фрукты), так и с несладкими (бекон, специи). В основном это охлажденные продукты с небольшим сроком хранения. Информацию по сливочному сыру см. в брошюре «Использование инулина и олигофруктозы ВЕNЕО^{ТМ} в сливочном сыре».

2. Технологические особенности

Данные продукты могут быть стабилизированы инулином как единственным стабилизатором или его комбинациями с гидроколлойдами, при этом можно создать множество оригинальных текстур. Инулин обладает способностью образовывать гель. При его интенсивном перемешивании с водой образуется кремоподобная структура, которая легко соединяется с пищевыми продуктами, заменяя жир и обеспечивая мягкий, приятный, сбалансированный вкус за счёт имитации вкусовых ощущений, присущих жиру. Инулиновый гель представляет собой трёхмерную структуру из нерастворимых субмикронных частиц инулина в воде. Данная структура фиксирует большое количество воды, и это обеспечивает физическую стабильность геля. На формирование геля оказывают влияние различные параметры (например, температура перемешивания, тип миксерного устройства и т.д.).

Одним из критических параметров процесса, который влияет на текстуру и силу геля, является интенсивность перемешивания. Чем выше механическая энергия устройства, тем лучшей текстурой и силой обладает полученный гель. Следовательно, наилучшим вариантом для этих целей является гомогенизатор.

Вторым критическим параметром является температура, при которой проводится процесс перемешивания/гомогенизации. Обычные температуры, используемые в пищевых производствах, находятся в интервале от 60 до 85° С, поэтому был разработан специальный продукт инулин BENEOTM HPX, который имеет высокую функциональность в образовании хорошей текстуры и силы геля при данных условиях (см. параграф 2.2.5).

2.1. Процесс производства

Процесс производства включает смешивание, нагрев и гомогенизацию. В общих чертах его можно описать в виде последовательности стадий:

- смешивание сухих ингредиентов;
- нагрев молочной базы до 70-80°С;
- диспергирование сухих ингредиентов в молочной базе;
- гомогенизация
 - одностадийная: при давлении 150 бар;
 - двухстадийная: при давлении 150 бар и 50 бар

- пастеризация при 75-85°C в течение 5 минут;
- добавление фруктов, специй,...
- перемешивание и охлаждение;
- упаковка.

2.2. Технологические преимущества инулина BENEOTM HPX

2.2.1. Оптимальные свойства текстурирующего агента для заданных условий процесса

Важнейшими параметрами, определяющими текстуру, твёрдость и намазываемость готового продукта являются условия процесса (температура, тип миксерного устройства и т.д.), а также тип инулина (BENEOTM HP/ HPX).

2.2.1.1. Температура перемешивания

На рис.1 показаны свойства инулинов BENEOTM НР и НРХ в шоколадном молочном спреде, произведённом с использованием высокоскоростного миксера Silverson. Температура перемешивания определяет конечную твёрдость продукта и, следовательно, функциональные свойства инулина. ВЕNEOTM НР даёт более хорошую текстуру при проведении процесса в области умеренных температур (30-60°С) и теряет свою функциональность при более высоких температурах. Для BENEOTM НРХ наблюдается совершенно другая закономерность — он проявляет оптимальную функциональность при высоких температурах перемешивания (65-85°С). Следовательно, инулин BENEOTM НРХ является наиболее приемлемым ингредиентом для данного промышленного применения.

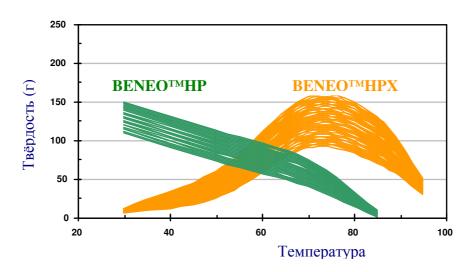


Рис 1. Твёрдость шоколадного молочного спреда в зависимости от температуры перемешивания. Продукт произведён с использованием высокочастотного миксера и содержит 20% жира и 9% BENEOTM HP / BENEOTM HPX.

2.2.1.2. Миксерное устройство

важным фактором является выбор устройства: также миксерного гомогенизатора или высокочастотного миксера с мешалкой. При одинаковой концентрации инулина ВЕNЕОТМ НР использование гомогенизатора приводит к образованию гораздо более твёрдого продукта по сравнению с продуктом, полученным с помощью высокочастотного миксера. Например, при концентрации ВЕNEOTM НР 9% в первом случае получается твёрдость 700 г (и при такой высокой твёрдости намазываемость отсутствует), в то время как использование миксера Silverson позволяет получать твёрдость 75 г. Таким образом, использование гомогенизатора приводит к сильному увеличению функциональности инулина BENEOTM HP/HPX. На фоне этого эффекта наблюдаемые аналогичные температурные зависимости будут менее существенны. Тем не менее, использование ВЕΝЕО^{ТМ} НРХ при этих температурах гомогенизации приводит к образованию более твёрдого продукта, чем это получается для того же количества BENEOTM HP.

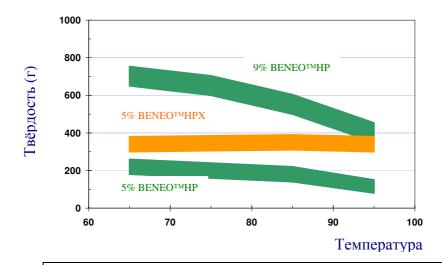


Рис. 2: Зависимость твёрдости шоколадного молочного спреда от температуры гомогенизации. Давление гомогенизации 150 бар. Рецептура содержит 20% жира и 5% или 9% $BENEO^{TM}$ HP или 5% $BENEO^{TM}$ HP (DAI407A) и включает использование гомогенизатора.

2.2.1. Улучшение текстуры.

Инулин BENEOTM HPX позволяет улучшать текстуру молочных спредов, обеспечивая мелкозернистую, мягкую, кремообразную текстуру. Сила геля трех шоколадных спредов с одинаковым содержанием сухого вещества и аналогичным процессом получения определена с помощью текстурного анализатора TA-XT2. Проведена оценка трёх стабилизационных систем: 5% BENEOTM HP или 5% мальтодекстрина или 5% обезжиренного сухого молока (последнее в основном просто обеспечивало увеличение содержания сухого вещества в рецептуре).

afi@orafti.com • www.orafti.com

Инулин BENEOTM HPX проявляет великолепные функциональные свойства по сравнению с мальтодекстринами или обезжиренным сухим молоком. Продукт, BENEOTM, инулина использованием имеет более характеристики твердости и намазываемости. Дегустация также подтверждает улучшение намазываемости и вкусовых качеств (более чистый вкус, более приятные вкусовые ощущения).

текстурирующего Во-вторых, эффективность BENEOTM HPX как стабилизатора в готовом молочном спреде (шоколадный спред 20% жирности) оценивается с помощью постепенной замены обезжиренного сухого молока ВЕНЕОТМ НРХ (рис. 3). Текстура становится более твёрдой, а продукт при этом приобретает более хорошую намазываемость.

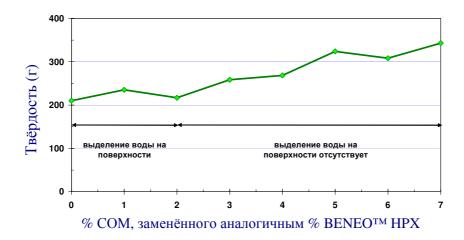


Рис 3.: Твёрдость шоколадного молочного спреда в зависимости от возрастающей замены обезжиренного сухого молока на BENEOTM HPX. Peuenmypa DAI407A, 20 % жира.

2.2.3. Замена жира

Инулин BENEOTM HPX обладает отличными свойствами заменителя жира и обеспечивает мягкий, сливочный вкус и жироподобную текстуру.

2.2.4. Намазываемость

Инулин BENEOTM HPX обладает уникальными свойствами получения ДЛЯ пастообразных продуктов:

- улучшает прилипание к ножу;
- обеспечивает мелкозернистую текстуру с хорошей намазываемостью;
- обеспечивает кремообразную, а не резиноподобную консистенцию.

2.2.5. Стабильность

Инулин BENEOTM HPX стабилизирует молочные спреды благодаря своей отличной способности связывать воду. Можно даже получать продукты с инулином в качестве единственного стабилизатора. На рис.3 показаны результаты эксперимента по связыванию воды с помощью BENEOTM HPX. Шоколадный спред без BENEOTM HPX имеет большое количество несвязанной воды на поверхности, в то же время это явление резко уменьшается с увеличением содержания BENEOTM HPX. Начиная с 3% концентрации BENEOTM HPX и выше несвязанной воды на поверхности больше нет.

3. Рецептуры

Спреды средней жирности	Натуральный DSP001A	Фруктовый DSP201A	Шоколадный DSP102A	Шоколадный DSP101A
Молочные ингредиенты	Сливки	Сливки	Сливки	Сливки
	Йогурт		Творог	
Стабилизаторы	Инулин BENEO ^{тм} HPX каррагинан	Инулин BENEO TM HPX	Инулин BENEO TM HPX	Инулин BENEO TM HPX
Сухое вещество	45,2%	53,6%	56,7%	53,9%
COM	19,1%	6,8%	9,5%	8,0%
Инулин	5,7%	5,9%	5,7%	4,8%
Жирность	20,0%	15,5%	20,3%	19,7%
Энергетическая ценность (на 100г)	255 кКал / 1060 кДж	268 кКал 1125 кДж	299 кКал 1255 кДж	289 ккал 1210 кДж

Спреды средней жирности содержат от 10 до 20% жира. Приведенные выше рецептуры для продуктов 15-20% жирности показывают отличные свойства BENEOTM HPX, выступающего в роли единственного стабилизатора. В большинстве рецептур не требуется введение других стабилизаторов, так что получаются полностью натуральные продукты с «чистой» этикеткой, в которых инулин, кроме того, проявляет свои диетические свойства натурального пищевого волокна, пребиотика, и т.д. Таким образом, полученные продукты вписываются в концепцию здорового, сбалансированного питания.

Спред низкой жирности	Фруктовый спред DSP204A		
Молочные ингредиенты	Творог, сливки		
Стабилизаторы	Инулин BENEO $^{\text{TM}}$ HPX, каррагинан		
Сухое вещество	50,2%		
Обезжиренное сухое молоко	13,2%		
Инулин	5,7%		
Жирность	9,9%		
Энергетическая ценность (на 100г)	229 кКал / 950 кдж		

Спреды низкой жирности содержат менее 10% жира. Приведенная выше рецептура является спредом с очень низкой жирностью (около 9%). При понижении содержания жира до такого уровня требуется более высокая концентрация BENEOTM HPX как единственного стабилизатора или его комбинация с гидроколлойдами. По некоторым причинам предпочтительным для смесей с BENEOTM HPX является каррагинан:

- наблюдается синергизм желирующей способности инулина и каррагинана при их совместном использовании, в результате получается очень устойчивая текстура с хорошей намазываемостью;
- в системах с низкой жирностью каррагинан препятствует осаждению белков.

Для получения фруктовых спредов предпочтительно использовать фруктовые наполнители, стабилизированные модифицированным крахмалом. При этом получается прочная мягкая консистенция с отличной намазываемостью. Если используется наполнитель на пектине, то, вследствие взаимодействия его с кальцием молочной основы, получается более мягкий продукт, склонный к расслаиванию.

4. Диетические свойства молочных спредов, содержащих BENEOTM HPX

Спреды низкой жирности позволяют сочетать удовольствие от их употребления в пищу с концепцией здорового питания. Это относится к продуктам пониженной жирности, в которых $BENEO^{TM}$ HPX выступает в роли пребиотического пищевого волокна и одновременно придаёт продукту текстуру и вкусовые качества, присущие продукту нормальной жирности.

Более того, инулин является 100% натуральным ингредиентом, который позволяет получать продукты пониженной жирности без добавок, т.е. с «чистой этикеткой».

5. Выводы

Инулин BENEOTM HPX позволяет:

- обеспечивать оптимальную стабильность и намазываемость;
- получать хорошую текстуру спредов с непрерывной водной фазой;
- заменять жир с сохранением вкусовых качеств, присущих продукту нормальной жирности;
- получать полностью натуральный продукт с «чистой этикеткой»;
- заявлять диетические свойства на упаковке;
- соединять диетические и технологические свойства, образуя продукт, удовлетворяющий требованиям здорового питания.

Стр. 6 Использование Вепео™ в молочных спредах

Информация, изложенная в данной брошюре, соответствует текущему состоянию нашего знания о предмете и предоставляется без каких-либо обязательств. Она не содержит каких-либо гарантий того, что поставка или использование продуктов на какой-либо территории не будет являться нарушением прав третьей стороны на коммерческую или интеллектуальную собственность. Данная информация также не может рассматриваться как руководство для использования наших продуктов в нарушение существующих патентов или местного законодательства в области пищевой промышленности.

Полное или частичное воспроизведение данной брошюры разрешается только с разрешения редактора.

Ответственный редактор: Paul Coussement

